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A complete statistical description of the properties of a cellular microstructure 
generated by a three-dimensional Poisson-Voronoi tesselation has been 
obtained by a rigorous computer simulation involving several hundred 
thousand cells. A two-parameter gamma distribution is found to be a good fit 
to the cell's face, volume, and surface area distributions. For a sample size of 
several thousand cells or less, a lognormal distribution can also be used to 
approximate these distributions. The individual face, area, and edge length 
distributions are also obtained. 

KEY WORDS: Voronoi cell; Poisson; gamma distribution; lognormal 
distribution. 

1. I N T R O D U C T I O N  

The Voronoi  tesselation is a convenient  and  powerful method  to carry out  
a r a n d o m  subdivision of space. It has been widely used as a model  in the 
study of the l iquid structure, (1) polycrystall ine structure, (2) protein struc- 
ture, (3~ f ragmenta t ion of the universe, (4'5) in metallurgy, (6/ biology, ~7) and  

geography. (8) 

According to the definit ion of a Voronoi  tesselation, a Voronoi  cell 
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associated with a nucleus P in space contains all points in that space which 
are closer to P than to any other nucleus. The Voronoi tesselation thus 
produces convex polyhedral cells which have planar faces and completely 
fill the space. Most important from a physical point of view, the topology 
of the resulting cellular network is similar to that of ceramic and 
metallurgical microstructures. That is, every edge connects three gains and 
two vertices, and every vertex connects four edges, six faces, and four 
grains. Thus, a topological similarity exists, which is readily seen in Fig. 1. 

As emphasized in the seminal work of Smith (9) and expanded on by 
others (e.g., Rhines and Craig(l~ the topology of each grain in such a 
microstructure is characterized by a single parameter, which we take to be 
its number of faces F. One can then distinguish topological classes of grains 
which in metals and ceramics vary from F = 4 to 36, i.e., ~ 33 classes 

Fig. 1. (a) Three-dimensional microstructure revealed in the intragranular fracture cross 
section of polycrystalline electroceramic PbMgu3Nb2/303 (lead magnesium niobate). (b) 
Topologically similar three-dimensional Poisson Voronoi microstructure from the present 
work. 
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with mean F ~  14-15 and volume increasing monotonically with increasing 
topological class. 

A statistical model of grain growth based on an assumed lognormal 
distribution of grains by topological class and by size was developed by 
one of the authors. (11) This model has received some attention, (12) but has 
been criticized because of a lack of theoretical basis for the lognormality 
assumed in its formulation. The present work was motivated in part by the 
desire to investigate in somewhat greater detail the statistical topology of 
a topologically equivalent microstructure for a case where complete access 
to three-dimensional properties of a very large numbers of grains would be 
possible. 

Similar detailed analyses of the two-dimensional statistical topology 
of a Poisson-Voronoi tesselation have been carried out by Hinde and 
Miles (13) and Gilbert. (14~ The present work is built in large part on their 
groundbreaking efforts and is intended to provide a comprehensive statisti- 
cal characterization of the three-dimensional Poisson-Voronoi tesselation. 
In later papers we will describe real-time graphical display of microstruc- 
tures containing 1000-10,000 grains and development of a finite element 
analysis package which we have successfully used to calculate the elastic 
moduli of simulated metal and ceramic microstructures. 

Meijering (15) in his classic paper studied the topological properties of 
the Voronoi cells, giving theoretical results for the mean value of the 
number of faces, edges, and vertices. Gilbert (lg~ analytically calculated the 
variances of their statistical distributions. To date, no exact closed-form 
solution has been found for these discrete statistical distributions. 

In the past decade, numerous researchers ~16-19) have studied the 
characteristics of the Voronoi cells using computer simulation. In general 
their simulations were for a few thousand cells, which we show in this 
study is inadequate to distinguish subtle differences in the statistics. In 
order to obtain accurate results for the statistical distributions of topologi- 
cal and size parameters, we have used a Monte Carlo method to simulate 
several hundred thousand Voronoi cells in three dimensions. 

It will be shown that the face, volume, and surface area distributions 
of the Poisson-Voronoi cells are best described by the gamma distribution 
with appropriate choice of parameters. The gamma distribution with two 
parameters a and b is described by 

xa--1 
= e-x /b  dx, x > 0 

P .... +Jx baF(a)  

where the mean and the variance of the distribution are ab and ab 2, 

respectively. 
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Our study also shows that for sample sizes less than about 5000 cells, 
the face, volume, and surface area distributions of the Voronoi cells can be 
approximated by a lognormal distribution. 5 This is due to the fact that for 
the ranges of the parameters for these distributions found in the Poisson- 
Voronoi tesselation, there is a negligible difference between the two 
distributions.~2~ 

2. A L G O R I T H M  

In the Voronoi tesselation of space, the topological conditions to 
be satisfied for each individual polyhedron are (i) V + F - E =  2 and (ii) 
V = 2 F -  4, where V is the number of vertices, F is the number of faces, and 
E is the number of edges. 

We have used these conditions to write an efficient algorithm 
to generate a Voronoi structure in three dimensions. The steps of the 
algorithm are: 

(i) Define a region R containing N nuclei to generate N Voronoi 
cells. 

(ii) Calculate the maximum distance between the ith nucleus and 
any of the points in the region R, denoted by dmax[i], i= 1, 2,..., N. 

(iii) Calculate the minimum distance between the ith nucleus and 
any of the points in the region R, denoted by drain[i], i =  1, 2,..., N. 

(iv) Calculate the minimum of dmax[-i], i =  1, 2 ..... N, say 

m=min{dmax[i]} 

(v) Find those nuclei for which dmin[i ] ~<m. Let this condition be 
satisfied by N1 nuclei (il, i2 ..... iN1). 

(vi) (a) If N1 ~<3, stop. 

(b) However, if N1 = 4, and the volume of region R is less than 
(a predetermined small number which depends on the nuclear density; in 
the Monte Carlo portion of the study, for N =  300 nuclei in a unit cube, 
~= 1.0 x 10-22), then the coordinates of the vertex common to il, ia, i3,  

a n d  i 4 are those of the center of the sphere which passes through the i~, i2, 
i3, and i 4 nuclei. 

(c) If { ( N l > 4 ) }  or { ( N l = 4 )  and (volume of region R>e)} ,  

s The  lognormal  d is t r ibut ion with two paramete r s  ~hn and  Xso is described as 

1 ~ (log e x - log e Xso) 2 ]  
 x,x+ x 1_- 24~ ]dx, 
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Table  I. Norma l i za t ion  Constants  a 

Variable Normalization constant 

Volume p - 

Surface area p -2/3 

Face area p - -  2/3 

Edge length p - =/3 

I n  the present paper the density of nuclei p = 300 nuclei in a 

unit cube. 

divide the region R into two or more subregions and repeat from step (ii), 
taking (il, i2,..., iN1) nuclei into account. 

After finding all the vertices in the system, one can easily find the num- 
bers of faces and edges for a specific Voronoi cell by searching its vertices 
and finding the identities of the corresponding nuclei with which it shares 
the vertices. One test regarding the smallness of e is to verify that all the 
polyhedra satisfy the topological constraints (i) V +  F - E =  2 and (ii) V =  
2 F -  4. This algorithm is very efficient compared to that of Mahin e t  a/. (19) 

because it searches only the vertices and not the edges and the faces, which 
take much more time. The computation time is thus drastically reduced. 

For the Monte Carlo calculation of the properties of the Voronoi cells, 
we generated 300 (Poisson-distributed) random nuclei within a unit cube, 
with ,one of the points at the center of the cube. We then calculated the 
properties of the Voronoi cell associated with the central nucleus. This 
Voronoi cell was not included in the analysis if one (or more) of its corners 
was on the face of the cube. This typically occurred about ten times in 
the process of generating 358,000 cells. We have accumulated statistics, 

Table II. Propert ies  of  Vorono i  Cells 

Surface Edge length Edge per 
Faces Volume area per cell face 

Expected (mean) 15.5355 

Calculated (mean) 15.5431 

Maximum 36.0000 

Minimum 4.0000 

Standard deviation 3.3350 

Skewness 0.1738 

Kurtosis ( - 3) 0 .0998 

1.0000 5.8209 17.4956 5.2260" 

1.0011 5.8267 17.5204 5.2280 

4.0870 13.8315 - -  15.0000 

- -  - -  - -  3.0000 

0.4198 b 1.4635 - -  1.5763 

0.3937 0.1549 - -  0 .4307 

0.8108 0 .0464 - -  0.1431 

a Santalo.(23) 
b Expected value is 0.424. (=4) 

822,,'67/3-4-7 
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indicating a negligible but nevertheless nonzero bias. As Hanson (~7~ had 
earlier found faces out to the 98th nearest neighbor, we chose 300 Poisson 
points within the cube, so that there would be 

- - x  x 3 0 0 ~  157 
3 

Poisson points within the sphere embedded within the cube, i.e., 156 
neighboring cells for the central cell in the cube. 

Table III. Face Distribution (Based on 358,000 Simulated Cells) 

Faces Frequency Probability Hanson ~17~ 

4 2 5.5866e- 6 0 
5 10 2.7933e-5 3.3333e--4 
6 117 3.2682e-4 3.3333e--4 
7 570 1.5922e-3 2.0000e-3 
8 2080 5.8101e-3 3.3333e-3 
9 5347 1.4936e-2 1.5000e-2 

10 11057 3.0885e - 2  2.6667e - 2  
11 18657 5.2115e-2 5.1333e-2 
12 27548 7.6950e-2 7.7000e-2 
13 35947 1.0041e-1 9.3000e-2 
14 41044 t .1465e-1 1.0633e-1 
15 42699 1.1927e-1 1.2800e-1 
16 41117 1.1485e-1 1.2667e-1 
17 36316 1.0144e -- 1 9.7667e --2 
18 29515 8.2444e -- 2 8.5333e -- 2 
19 22643 6.3249e-2 6.6000e-2 
20 16193 4.5232e-2 4.6000e-2 
21 10962 3.0620e-2 2.8333e-2 
22 6927 1.9349e - 2  2.0000e - 2 
23 4167 1.1640e-2 1.1000e-2 
24 2406 6.7207e- 3 6.3333e- 3 
25 1366 3.8156e-3 5.3333e-3 
26 665 1.8575e-3 1.0000e-3 
27 349 9.7486e-4 1.3333e-3 
28 179 5.0000e--4 1.3333e--3 
29 71 1.9832e--4 0 
30 22 6.1453e-5 3.3333e-4 
31 14 3.9106e- 5 0 
32 5 1.3966e-5 0 
33 1 2.7933e-6 0 
34 2 5.5866e-6 0 
35 1 2.7933e--6 0 
36 1 2.7933e-6 0 
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3. RESULTS 

Table II shows a list of the important parameters for Voronoi cells 
along with those deduced analytically by previous workers. Tables III-V 
and Figs. 2-4 show the various statistical distributions of the faces and the 
edges of the Voronoi cells. These results are based on the simulation of 
358,000 Voronoi cells. 

Tables VI and VII and Figs. 5-10 show the distributions of volume 
and surface area of the Voronoi cells. Data points were grouped into inter- 
vals defined in the figure captions. Tables VIII and IX and Figs. 11-14 
show the statistical properties of the area of the individual faces. 
Tables VIII and IX and Figs. 15-17 show the properties of the lengths of 
the individual edges of the Voronoi cells. Figure 18 is a plot of the mean 
total edge length of the Voronoi cell having a fixed number of faces, which 
was calculated by multiplying the mean length of an edge by the number 
of edges corresponding to the number of faces, i.e., (3 • number of edges 
-6) .  Figure 19 shows the plot of the mean perimeter for faces having a 
fixed number of edges. These data are based on the simulation of 102,000 
Voronoi cells. 

Figure 20 shows the probability distribution (based on the simulation 
of 148,000 Voronoi cells) of the use of nearest neighbors of a point in 
forming a Voronoi cell face. Figure 21 shows a plot of the mean number 
of faces FF of neighboring cells for the subset of cells having a fixed number 
of faces, designated by the integer subscript F. 

Table IV. Distribution of n-Sided Faces (Based on 358,000 Simulated Cells) 

Sides Frequency Probability Hanson (17) 

3 748304 1.3448e- 1 1.3545e - 1 
4 1280529 2.3013e-1 2.2904e-1 
5 1344428 2.4161e- 1 2.4121e - 1 
6 1058408 1.9021e-1 1.8963e-1 
7 648015 1.1646e-1 1 .15 l i e -1  
8 313743 5,6384e-2 5.8385e- 2 
9 120637 2.1680e-2 2.1963e-2 

10 37951 6.8203e-3 6.6743e-3 
11 9843 1.7689e-3 1,8125e-3 
12 2121 3.8117e - 4  6.3971e-4 
13 381 6.8471e - 5 6.3971e- 5 
14 56 1.0064e - 5 2.1324e- 5 
15 14 2.5160e-6 0 
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Table V, Edge Distribution for n-Faced Cells (Based on 358,000 Simulated 
Cells) 

Number Mean number Standard 
of Nces ofedges deviation Skewness K u r t o s i s ( - 3 )  

4 3.0000 
5 3.6000 0.4899 -0.2041 -1.8333 
6 4.0000 0.7000 0.0000 -0.9593 
7 4.2857 0.8546 0.1336 -0.6691 
8 4.5000 1.0071 0.2208 -0.5759 
9 4.6667 1.1239 0.2724 -0.4618 

10 4.8000 1.2232 0.3140 -0.3846 
11 4.9091 1.3081 0.3458 -0.3400 
12 5.0000 1.3769 0.3724 -0.2723 
13 5.0769 1.4410 0.3953 -0.2067 
14 5.1429 1.4909 0.4088 -0.1539 
15 5.2000 1.5376 0.4268 -0.0940 
16 5.2500 1.5763 0.4321 -0.0540 
17 5.2941 1.6142 0.4480 -0.0169 
18 5.3333 1.6454 0.4488 0.0516 
19 5.3684 1.6740 0.4602 0.0804 
20 5.4000 1.7024 0.4648 0.1247 
21 5.4286 1.7228 0.4699 0.1289 
22 5.4545 1.7413 0.4716 0.1885 
23 5.4783 1.7633 0.4820 0.1620 
24 5.5000 1.7755 0.4815 0.1830 
25 5.5200 1.7944 0.4901 0.1813 
26 5.5385 1.7981 0.4844 0.2024 
27 5.5556 1.8148 0.4811 0.2845 
28 5.5714 1.8115 0.4751 0.0782 
29 5.5862 1.8608 0.5026 0.1450 
30 5.6000 1.8391 0.4923 0.6832 
31 5.6129 1.8928 0.4835 0.5977 
32 5.6250 2.1118 0.9848 1.0677 
33 5.6364 1.7721 0.9279 -0.9723 
34 5.6471 1.6783 0.2385 0.4081 
35 5.6571 1.7062 1.6851 -0.1933 
36 5.6667 2.0548 3.3730 0.1579 
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Fig. 2. The probability distribution of faces for 3D Poisson-Voronoi  tesselations. This is 
based on 358,000 simulated cell data (histogram). The best-fit (discretized) gamma  distribu- 
tion with parameters a =21.6292 and b = 0.7199 is shown by continuous line. 
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Fig. 3. The probability distribution of edges for the 3D Poisson-Voronoi  tesselation 
obtained on the basis of 358,000 simulated cells. 



532 Kumar et  al. 

F = 4  
1.0 1 .o 

3.5 0.5 

�9 IIL 0.4 F =  8 �9 

�9 0 .2  

- 0 .4  F = 1 2  0 .4  

F = 5  
, 1 . 0  

F = 9  

,I . . . . .  
F =  13 

F = 6  
.1.0 

F = 7  

.0.5 I 

I ] 
' 0�9 

' 0 .2  

l i, 
�9 0 .4  

o+2111 o+21 o+2f 
1 ... .  l, . . . . . . . . . . . .  l, . . . . . . .  

?0.4 F = 1 6  ,0.4 F =  17 .0.4 

h,... 
F = 2 1  

ll., ....... 
tO L5 

o2111 o21 
i . . . .  i , ,  . . . . . . . . . . .  

0.4 F = 20 ' 0.4 

~ ...i ..... iJ .............. 
0 5 10 15 5 

F = I 0  

F =  14 

, 0 , 5  

dl, . . . . . . . . .  
"0,4 F = 11 

~ I, ........ 
�9 0 . 4  F = 1 5  

�9 0 , 2  

,t, . . . . . . . . . . . .  [ 1, ......... 
F = 1 8 " ~  F = 1 9  

�9 0 .2  " 0 .2  

I h .......... i h, ........ 
�9 0.4 F = 2 2  0.4 F = 2 3  

..i..h, ........... i .... IJ., ........ 
5 t0 15 5 10 15 

(a) 

++  24[04  +Io+ F+io4 

lUll l~ I~ J~ I . . . . .  I ,  . . . . . . . . . . . . .  , . I ,  . . . . . . . .  , ,  . . . . .  I.I . . . . . . . . . . . . . . . .  I.,1. ...... 
0 5 10 15 5 10 15 5 10 15 5 10 15 

(b) 
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faces. 
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Fig. 5. The probability density distribution of cell volumes in 3D Poisson-Voronoi tessela- 
tion. This is based on 102,000 simulated cell data. The volume data were grouped in equal 
intervals of width 0.122. The best-fit gamma distribution with parameters a=5.6333 and 
b = 0.1782 is also shown. See Table I and text for the description of the volume normalization 
factor. 

Table VIII. Distributions of Area of Individual Faces and Length of 
Individual Edges for n-Edged Face (Based on 102,000 Simulated Cells) 

Number Area of individual face 
of 

edges Mean Standard deviation 

Length of individual edge 

Mean Standard deviation 

3 0.0457 0.0551 0.2509 0.2295 
4 0.1385 0.1463 0.3823 0.2892 
5 0.3043 0.2346 0.4481 0.3202 
6 0.5047 0.2986 0.4725 0.3358 
7 0.7092 0.3389 0.4730 0.3412 
8 0.9067 0.3625 0.4623 0.3405 
9 1.0918 0.3797 0.4466 0.3375 

10 1.2632 0.3916 0.4289 0.3311 
11 1.4331 0.3916 0.4130 0.3251 
12 1.5606 0.4000 0.3927 0.3146 
13 1.7656 0.4180 0.3842 0.3116 
14 1.8388 0.3886 0.3642 0.2947 
15 1.8594 0.3092 0.3345 0.2516 



536 Kumar e t  al. 

Table IX. Distribution of Length of Individual Edge and Area of 
Individual Face for n-Faced Cells (Based on 102,000 Simulated Cells) 

Number 
of Standard deviation of area 

faces distribution of individual face 

Length of individual edge 

Mean Standard deviation 

5 0.1735 0.6371 0.3734 
6 0.2746 0.6710 0.3647 
7 0.2930 0.5954 0.3383 
8 0.3180 0.5539 0.3479 
9 0.3316 0.5263 0.3454 

10 0.3440 0.5031 0.3415 
11 0.3516 0.4833 0.3373 
12 0.3592 0.4687 0.3342 
13 0.3667 0.4572 0.3311 
14 0.3711 0.4460 0.3278 
15 0.3758 0.4366 0.3259 
16 0.3768 0.4281 0.3225 
17 0.3804 0.4218 0.3207 
18 0.3825 0.4152 0.3184 
19 0.3834 0.4087 0.3162 
20 0.3842 0.4045 0.3149 
21 0.3852 0.3986 0.3125 
22 0.3868 0.3950 0.3113 
23 0.3878 0.3902 0.3097 
24 0.3877 0.3887 0.3081 
25 0.3854 0.3841 0.3062 
26 0.3832 0.3815 0.3109 
27 0.3772 0.3770 0.3003 
28 0.3808 0.3773 0.3040 
29 0.3714 0.3719 0.2960 
30 0.3647 0.3698 0.3088 
31 0.3642 0.3592 0.2871 

The volume, surface area, area of individual face, and edge length of 
the cells are normalized by dividing them by constants. These normaliza- 
tion constants depend on the nuclear density within the chosen volume. 
They are given in Table I for each type of variable. 

4.  D I S C U S S I O N  

4.1. Face and Edge Distribution 

T h e  m e a n  n u m b e r  of  faces f r o m  o u r  s i m u l a t i o n ,  f f  is 15.5431, w h i c h  

is ve ry  n e a r  M e i j e r i n g ' s  exac t  resu l t  (15) ( F = 4 8 r c 2 / 3 5 + 2 =  15.5355) a n d  
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Fig. 6. The probability density distribution of volume of Voronoi cells having a fixed 
number of faces F. This is based on 102,000 simulated cell data. The volume data were 
grouped in equal intervals of width 0.122. The vertical axis and the horizontal axis denote the 
probability density and the volume, respectively. See Table I and text for the description of the 
volume normalization factor. All the curves can be described by the gamma distribution with 
suitable parameters (listed in Table VI). 

substantially better than those of Hanson (17) (F=  15.63) and Quine and 
Watson (21) ( if= 15.5052). 

Hinde and Miles (13) suggested a discretized three-parameter gamma 
distribution for the side (edge) distribution in the two-dimensional 
Poisson-Voronoi tesselation. Using their data, we found that the best-fit 
discretized two-parameter gamma distribution 6 has a=21.254 and 

6 Discretized gamma distribution: 

n + 1/2 X a -  1 

f ( n )  = J . / _ l / 2  b ~ )  e -  r"b d x  
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Fig. 7. Mean volume of Voronoi cells having a fixed number  of faces, This is based on 
102,000 simulated cell data. See Table I and text for the description of the volume normaliza- 
tion factor. ( + )  The observed data; solid curve shows the best-fit curve VF = 0.0164F 1498, 
where VF is the mean cell volume of an F-faced cell. 
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Fig. 8. The probability density distribution of surface area of Voronoi cells in 3D Voronoi 
tesselation. This is based on 102,000 simulated cell data. The surface area data were grouped 
in equal intervals of width 0.3040. The best-fit g amma  distribution with parameters 
a=15 .4847  and b=0.3778 is also shown. See Tab le I  and text for the description of the 
surface area normalization factor. 
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Fig. 9. The probability density distribution of surface area of Voronoi cells having a fixed 
number of faces F. This is based on 102,000 simulated cell data. The surface area data were 
grouped in equal intervals of width 0.3040�9 See Table I and text for the description of the sur- 
face area normalization factor. The vertical axis and the horizontal axis denote the probability 
density and the surface area, respectively. All the curves can be described by the gamma 
distribution with suitable parameters (listed in Table VII). 

b=0.282 .  These values of  a and b give max Ifob~--fntl of 0.00256, 7 which 
is about 2.5 times higher than the 1% Kolmogrov-Smirnov  limit 0.00107 
(as the sample size used, n = 2 x 106, was very large, this difference is not 
significant). Note  also that the mean value ab works out to be 5.994, which 
is within 0.1% of the theoretical value i / =  6. 

In three dimensions, the discretized gamma distribution is a good 
approximation to the distribution of Voronoi  cell faces. The best-fit gamma 
distribution has a = 21.6296 and b = 0.7199 (ab _~ 15.57); for these values of 

7max Ifobs--ftitl is the maximum of the absolute difference between the fitted and the 
observed cumulative distribution functions. 



540 Kumar et  al. 

< 
6 u 

r/3 

Z 
< 2 -  Lr~ 

0 J I 

10 20 30 

NUMBER OF FACES 

Fig. 10. Mean surface area of Voronoi cells having a fixed number of faces. This is based on 

102,000 simulated cell data. See Table I and text for the description of the surface area 

normalization factor. ( + )  The observed data; the solid curve shows the best-fit curve 

SF = 0.5614F ~ where SF is the mean surface area of an F-faced cell. 

a and b, m a x  l f o b s - - f l i t [  is 0.00372, which is slightly higher than the 1% 
Kolmogrov-Smirnov limit 0.00254 (for n = 358,000). 

Our study also shows that for the face distribution in three dimen- 
sions, the discretized lognormal distribution with parameters O'ln = 0.2131 
and Xso = 2.7226 satisfies the 1% and 5 % Kolmogrov-Smirnov limits up 
to 13,000 and 8,000 Voronoi cell data, respectively. The values of 1% and 
5 % Kolmogrov-Smirnov limits are 1.52/x ~ and 1.22/w/n, respectively. 

One remarkable point of similarity in the two- and three-dimensional 
Voronoi tesselations is that the coefficient of variation ( = 1/xfa in the case 

0.3 

>. 

Z 0.2- 

L 
v~ o.a- 
< 
�9 

0.0 ' ~  . . . . .  r . . . . . . . . . . . . . . . . .  : 

1 2 

AREA OF INDIVIDUAL FACE 

Fig. 11. The probabili ty density distribution of area of individual faces for 3D Voronoi 
tesselation. This is based on 10%000 simulated cell data. The face area data were grouped in 
equal intervals of width 0.0485. See Table I and text for the description of the face area 

normalization factor. 
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Fig. 12. The probability density distribution of the area of individual faces for Voronoi cells 
having a fixed number of faces F. This is based on 102,000 simulated cell data. The face area 
data were grouped in equal intervals of width 0.0485. See Table I and text for the description 
of the face area normalization factor. The vertical axis and the horizontal axis denote the 
probability density and the individual face area, respectively. 

of the gamma distribution, 0.2169 in two dimensions, and 0.2150 in three 
dimensions) is substantially independent of  dimensionality. It would be 
intriguing if this result were valid for arbitrary dimensionality. 

As each Voronoi  cell satisfies the two conditions V + F - E = 2  and 
V =  2 F - - 4 ,  the distributions for the edges and the vertices are not inde- 
pendent. The mean for these two distributions can be calculated from the 
above two equations: 

mean number of vertices = 2 F -  4 

= 27.0862 

mean number of edges = 3 F -  6 
= 40.6293 
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Fig. 13. The probability density distribution of area of individual faces having a fixed 
number  of edges E. This is based on 102,000 simulated cell data. The face area data were 
grouped in equal intervals of width 0.0485. See Table I and text for the description of the face 
area normalization factor. The vertical axis and the horizontal axis denote the probability 
density and the individual face area, respectively. 
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Fig. 14. Mean area of faces having a fixed number  of edges. This is based on 102,000 
simulated cell data. See Table I and text for the description of the face area normalization 
factor. ( + )  The observed data; the straight line shows the best-fit straight line ( ~ ) , =  
-0.57251 + 0.18124n, where (TA), is the mean area of an n-sided face, n = 4, 5 ..... 13. 
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Fig. 15. The probability density distribution of the length of individual edges in 3D Voronoi 
tesselations. This is based on 102,000 simulated cell data. The edge length data were grouped 
in equal intervals of width 0.0390. See Table I and text for the description of the edge length 
normalization factor. 

These values are very close to the Meijering's (15) values of 27.0710 and 
40.6065, respectively. 

The mean number of edges per face, 5.228, is very close to the expected 
value 5.226, (23~ and also to 5.20_+0.06, the value given by Mackay (2~ for 
inorganic crystal structures. 

We found that the maximum and the minimum numbers of faces in 
our study were 36 and 4, respectively, whereas those reported earlier were 
31 (2~ and 5, (17~ respectively. We also found several 15-edged faces, whereas 
the earlier reported maximum number of edges in a face was 14. (17) 

For  F-faced Voronoi cells, the mean number of edges per face E F is 
equal to 6 - 1 2 I F .  As F ~  o% this value asymptotically approaches to 6, 
which is equal to the mean number of edges for the two-dimensional 
Voronoi polygons. 

4.2. Vo lume Distr ibut ion 

The mean and variance for the cell volume distribution, obtained from 
102,000 simulated cells, are very close to the expected values, as shown in 
Table II. 

Kiang (18) suggested a = 6.0 and b =1/6.0 as the gamma distribution 
parameters for the cell volume distribution; whereas Andrade and 
Fortes (16~ suggested a=5 .56  and b =  1/5.56. Our study shows that if 
we insist on a mean volume of 1.0, i.e., ab = t.0, then the best-fit gamma 
distribution parameters are a = 5.7869 and b = 1/a. However, for these values 

822/67/3~4-8 
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Fig. 16. The probability density distribution of the length of individual edges of Voronoi 
cells having a fixed number of faces F. This is based on 102,000 simulated cell data. The edge 
length data were grouped in equal intervals of width 0.0390. See Table I and text for the 
description of the edge length normalization factor. The vertical axis and the horizontal axis 
denote the probability density and the individual edge length, respectively. 

the maximum of the absolute difference between the observed cumulative 
probability function and the fitted cumulative probability function, 
max [fobs--fnt], is 0.00514, which is slightly higher than the 1% critical 
K o l m o g r o v - S m i r n o v  limit 1.52/w/-n ( = 0.00476). 

If we look  for the best gamma distribution fit irrespective of the value 
of the mean, then our study shows that a = 5 . 6 3 3 3  and b = 0 . 1 7 8 2  
(ab= 1.0004) gives the best fit and the value of max I fobs-ff i t l  in this case 
is 0.00289, which is below the 5% critical K o l m o g o r o v - S m i r n o v  limit 
1.22/x/-n ( = 0.00382). 

It is worth mentioning here that in the one-dimensional case, the 
distribution of the segment lengths obtained by the Voronoi  partition of  a 
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Fig. 17. The probability density distribution of the length of individual edges in faces having 
a fixed number of edges E. This is based on 102,000 simulated cell data. The edge length data 
were grouped in equal intervals of width 0.0390. See Table I and text for the description of 
the edge length normalization factor. The vertical axis and the horizontal axis denote the 
probability density and the individual edge length, respectively. 
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Fig. 18. Mean perimeter of Voronoi cells having a fixed number of faces. This is based on 
102,000 simulated cell data. See Table I and text for the description of the edge length 
normalization factor. ( + )  The observed data; the solid curve shows the best-fit curve 
(T-E)F = 1.6552F~ where (TE)e is the mean total edge length of an F-faced cell. 
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Fig. 19. Mean perimeter of faces having a fixed number  of edges. This is based on 102,000 
simulated cell data. See Table I and text for the description of the edge length normalization 
factor. ( + )  The observed data; the solid curve shows the best-fit curve ( ~ ) , , =  -2.7968 + 
3.0534 log e n, where (TE)n is the mean total edge length of an n-sided face. 

straight line is a gamma distribution with a =  2 and b =0.5, (18) and also, 
Weaire et  al. (22~ showed by computer simulation that the cell area distribu- 
tion in a two-dimensional Voronoi partition is best described by the 
gamma distribution with a = 3.61 and b = 1/a. 

Hanson (17) suggested a Maxwell distribution function defined as 

Px, x + dx = ~2 e-(4/zc)x2 dx 

for the volume distribution of the three-dimensional Poisson-Voronoi  cells. 
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Fig. 20. Probability of the nth-nearest-neighbor Voronoi cell sharing a common face. This 
is based on data for 148,000 simulated cells. ( + )  The observed data; the solid curve shows 
the best-fit curve 1171 P n = e x p [ - 0 . 0 1 4 7 1 ( n - 1 ) " 5 ] ,  where P ,  is the probability of the use of 
the n th  neighbor of a point in forming a Voronoi cell face. 
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Fig. 21. The joint probability distribution of faces. The vertical axis F F denotes the mean 
number of faces for the neighboring cells of a cell having F faces. ( + ) The observed data; the 
straight line shows the best-fit straight line FF= 16.57- 0.02F. 

The relationship becomes 

K/ = - -  e - ( 4 /~ ) ( v / t ~ )2  d / )  

7c 2 

where n is the expected number of observations in any interval of width 
(dv/~) and N is the total number  of cases observed. For  the Maxwell 
distribution, the value of m a x  [ fobs- - f f i t [  is 0.019137, which is very high 
relative to the 1% critical Kolmogrov-Smirnov  limit of 0.00476. Hence, we 
conclude that the gamma distribution gives a better fit to the cell volume 
distribution than the Maxwell distribution. 

Kurtz  and Carpay (u) suggested the lognormal distribution for the 
grain volume distribution. Our study shows that for the volume distribu- 
tion of the Voronoi cell, the lognormal distribution with parameters 
aln = 0.4332 and Xso = -0.0735 satisfies 1% and 5 % KS limits up to 7000 
and 5000 Voronoi cell data, respectively. 

The cell volume distribution for a fixed number of faces F is also found 
to be best described by the gamma distribution with suitable parameters. 
The values of the parameters for such classes of faces are listed in Table VI. 

Figure 7 shows the plot of mean cell volume for a fixed number of 
faces ]VF VS. F. The curve can be described by the equation 

VF = 0.0164F 1"49s 
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where VF is the mean cell volume of an F-faced cell, and F is the number 
of faces, 6-29. 

For  F =  15.5355, i.e., for the mean number of faces, from the above 
equation, VF= 0.9987, which is very close to the expected value for the 
volume of the three-dimension Poisson-Voronoi  cell, i.e., 1.0. 

4,3. Surface Area Distr ibut ion 

The mean surface area of the simulated Voronoi cells is very close to 
the expected value, as shown in Table II. The cell surface area distribution 
is best described by a gamma distribution with parameters a = 15.4847 and 
b = 0.3778. In this case max l fobs--ffit[ is 0.00785, which is about 1.5 times 
higher than the 1% critical Kolmogrov-Smirnov  value 1.52/~-n, i.e., 
0.00476 (remembering that the sample size used was very large, 
n = 102,000). If we insist on a mean of 5.8209, then the best-fit gamma 
distribution has the parameters a =  16.1576 and b=0.3603,  and 
max [fobs--f~t[ iS 0.01480. 

Our study shows that for the surface area distribution of a Voronoi 
cell, the lognormal distribution with parameters ~1n=0.2533 and 
xs0 = 1.7436 satisfies 1% and 5 % Kolmogrov-Smirnov  limits up to 7000 
and 4000 Voronoi cell data, respectively. The cell surface area distribution 
for a fixed number of faces is also best described by the gamma distribution 
with suitable parameters. The values of the parameters for such classes of 
faces are listed in Table VII. Figure 10 shows the plot of mean cell surface 
area for a fixed number of faces SF VS. Fo The curve can be described by the 
equation 

SF = 0-5614F~ 

where SF iN the mean surface area of an F-faced cell, and F =  6-29. 
For  F =  15.5355, i.e., for the mean number of faces, from the above 

equation, SF = 5.8210, which is very close to the expected value for the 
surface area of the three-dimensional Poisson-Voronoi  cell, i.e., 5.8209. (15/ 

4.4. Area of Individual Faces 

A plot of the mean area of an n-sided face versus n is shown in Fig. 14. 
As shown in the figure, the mean area of a face varies linearly as the 
number  of sides n. Using the least square method, one can write a linear 
relation 

(FA)n = -0.57251 + 0.18124n 

where (FA) n is the mean area of an n-sided face, and n =4 ,  5 ..... 13. 
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For the three-dimensional Poisson-Voronoi cell, the expected number 
of edges in a face is equal to 5.226. (23) From the above equation, for 
n = 5.226, the mean area of a face is equal to 0.3747, which is equal to the 
expected area of a face ( =  5.8209/15.5355). 

4.5. Edge Length Distr ibut ion 

As shown in Fig. 15, the probability density distribution of the length 
of individual edges is linear for a considerable length. Thereafter, it drops 
off at a slower rate. The variation of the mean total edge length of an 
F-faced Voronoi cell with respect to F is shown in Fig. 18. The equation for 
the mean total edge length of an F-faced Voronoi cell can be written as 

(TE)F = 1.6552F ~ 

where (TE)F is the mean total edge length of an F-faced celt, and F =  7-31. 
For  F =  15.5355, i.e., for the mean number of faces, from the above 

equation, the mean total edge length for the Voronoi cell is equal to 
17.4950, which is very close to the expected value of 17.4956. (~5) 

The variation of the mean total edge length, i.e., perimeter, for an 
n-sided face with respect to n is shown in Fig. 19. The equation for the 
perimeter of an n-sided face can be approximated by 

(TE)n = -2.7968 + 3.0534 log e n 

where (TE),, is the mean total edge length of an n-sided face, and n = 3-13. 
For  the expected number of edges in a face, i.e., n = 5.226, (23) from the 

above equation the mean total edge length per face is equal to 2.2524, 
which is very near to its expected value of 2.2523 ( = 2  x 17.4956/15.5355). 

4.6. Nearest Neighbor  Use 

l-Ianson (~7) suggested the equation 

Pn = exp[ - 0.01471(n - 1)15] 

for the probability distribution of the use of the nth neighbor of a point in 
forming a Voronoi cell face. Figure 20 is based on 148,000 simulated cell 
data. The function Pn predicts slightly lower probabilities of use for the 
second to eight nearest neighbors than the observed probabilities, and 
slightly higher probabilities of use for the 9th to 29th nearest neighbors, 
and fits the data well beyond the 29th neighbors. 

Hanson (17) found two faces at the 98th nearest neighbor, but we found 
three faces, one each at the l l5th,  l l9th,  and 138th nearest neighbors. 
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4.7. Correlat ion of Faces 

We generated 10,000 Poisson points within a cube having side 
lengths equal to 1.30 and, using the algorithm described above, simulated 
the Voronoi cells within a unit cube (of unit length) in the center of the 
original cube. We discarded those cells which had some portions on the 
unit cube faces, to eliminate any boundary effect. Finally, we had the data 
for 3729 Voronoi cells. The mean number of faces for the neighboring cells 
of the F-faced Voronoi cell is shown in Fig. 21. By using the least squares 
method, the results can be written as 

/~F = 16.57 - 0.02F 

where FF is the mean number of faces for the neighboring cells of an 
F-faced cell. 

5. CONCLUSION 

A detailed statistical analysis of the three-dimensional cellular 
microstructure generated by a Poisson-Voronoi tesselation was carried out 
for up to 358,000 cells using Monte Carlo methods. The results show that 
a two-parameter gamma distribution gives an accurate fit to the distribu- 
tion of faces, volumes, and surface areas of the cells. The cell volume and 
surface area distributions for a fixed number of faces are also found to be 
best described by the gamma distribution. Distributions of the areas of 
individual cell faces and the edge lengths were also obtained, but no 
well-known distribution was found to accurately describe them. For  
cellular microstructures limited to several thousand cells or less, a two- 
parameter lognormal distribution was found to give an accurate fit at a 5 % 
level of significance for the distributions of cell faces, surface areas, and 
volumes. 
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