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Properties of a Three-Dimensional
Poisson—Voronoi Tesselation:
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A complete statistical description of the properties of a cellular microstructure
generated by a three-dimensional Poisson-Voronoi tesselation has been
obtained by a rigorous computer simulation involving several hundred
thousand cells. A two-parameter gamma distribution is found to be a good fit
to the cell’s face, volume, and surface area distributions. For a sample size of
several thousand cells or less, a lognormal distribution can also be used to
approximate these distributions. The individual face, area, and edge length
distributions are also obtained.

KEY WORDS: Voronoi cell; Poisson; gamma distribution; lognormal
distribution.

1. INTRODUCTION

The Voronoi tesselation is a convenient and powerful method to carry out
a random subdivision of space. It has been widely used as a model in the
study of the liquid structure,””) polycrystalline structure,'® protein struc-
ture,® fragmentation of the universe,*> in metallurgy,'® biology,!”’ and
geography.®

According to the definition of a Voronoi tesselation, a Voronoi cell
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associated with a nucleus P in space contains all points in that space which
are closer to P than to any other nucleus. The Voronoi tesselation thus
produces convex polyhedral cells which have planar faces and completely
fill the space. Most important from a physical point of view, the topology
of the resulting cellular network is similar to that of ceramic and
metallurgical microstructures. That is, every edge connects three gains and
two vertices, and every vertex connects four edges, six faces, and four
grains. Thus, a topological similarity exists, which is readily seen in Fig,. 1.

As emphasized in the seminal work of Smith® and expanded on by
others (e.g., Rhines and Craig!'?), the topology of each grain in such a
microstructure is characterized by a single parameter, which we take to be
its number of faces F. One can then distinguish topological classes of grains
which in metals and ceramics vary from F = 4 to 36, ie.,, ~ 33 classes

’
012% LiNO3

WP = 97.6%
-l =on .

(b)
Fig. 1. (a) Three-dimensional microstructure revealed in the intragranular fracture cross
section of polycrystalline electroceramic PbMg,;;Nb,;;0; (lead magnesium niobate). (b)
Topologically similar three-dimensional Poisson—Voronoi microstructure from the present
work.
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with mean F~ 14-15 and volume increasing monotonically with increasing
topological class.

A statistical model of grain growth based on an assumed lognormal
distribution of grains by topological class and by size was developed by
one of the authors."" This model has received some attention,*? but has
been criticized because of a lack of theoretical basis for the lognormality
assumed in its formulation. The present work was motivated in part by the
desire to investigate in somewhat greater detail the statistical topology of
a topologically equivalent microstructure for a case where complete access
to three-dimensional properties of a very large numbers of grains would be
possible.

Similar detailed analyses of the two-dimensional statistical topology
of a Poisson—Voronoi tesselation have been carried out by Hinde and
Miles’®) and Gilbert."* The present work is built in large part on their
groundbreaking efforts and is intended to provide a comprehensive statisti-
cal characterization of the three-dimensional Poisson-Voronoi tesselation.
In later papers we will describe real-time graphical display of microstruc-
tures containing 1000-10,000 grains and development of a finite element
analysis package which we have successfully used to calculate the elastic
moduli of simulated metal and ceramic microstructures.

Meijering®®) in his classic paper studied the topological properties of
the Voronoi cells, giving theoretical resuits for the mean value of the
number of faces, edges, and vertices. Gilbert!'* analytically calculated the
variances of their statistical distributions. To date, no exact closed-form
solution has been found for these discrete statistical distributions.

In the past decade, numerous researchers'®'®’ have studied the
characteristics of the Voronoi cells using computer simulation. In general
their simulations were for a few thousand cells, which we show in this
study is inadequate to distinguish subtle differences in the statistics. In
order to obtain accurate results for the statistical distributions of topologi-
cal and size parameters, we have used a Monte Carlo method to simulate
several hundred thousand Voronoi cells in three dimensions.

It will be shown that the face, volume, and surface area distributions
of the Poisson—Voronoi cells are best described by the gamma distribution
with appropriate choice of parameters. The gamma distribution with two
parameters a and b is described by

a—1

P _ X
x,x+dx b"F(a)

e ™" dx, x>0

where the mean and the variance of the distribution are ab and ab?,
respectively.
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Our study also shows that for sample sizes less than about 5000 cells,
the face, volume, and surface area distributions of the Voronoi cells can be
approximated by a lognormal distribution.® This is due to the fact that for
the ranges of the parameters for these distributions found in the Poisson—
Voronoi tesselation, there is a mnegligible difference between the two
distributions.®%

2. ALGORITHM

In the Voronoi tesselation of space, the topological conditions to
be satisfied for each individual polyhedron are (i) V+ F— E=2 and (ii)
V=2F—4, where V is the number of vertices, F is the number of faces, and
E is the number of edges.

We have used these conditions to write an efficient algorithm
to generate a Voronoi structure in three dimensions. The steps of the
algorithm are:

(i) Define a region R containing N nuclei to generate N Voronoi
cells.
(i) Calculate the maximum distance between the ith nucleus and
any of the points in the region R, denoted by d,,.[i], i=1,2,.., N.
(iii)) Calculate the minimum distance between the ith nucleus and
any of the points in the region R, denoted by d;,[i], i=1, 2,..., N.
(iv) Calculate the minimum of d,,,,[], i=1, 2,.., N, say

m = min{dmax[i]}

(v) Find those nuclei for which d
satisfied by N1 nuclei (i, i3, inq)-

(vi) (a) If N1<3, stop.

(b) However, if N1 =4, and the volume of region R is less than ¢

(a predetermined small number which depends on the nuclear density; in
the Monte Carlo portion of the study, for N =300 nuclei in a unit cube,
e=1.0x10722), then the coordinates of the vertex common to i,, i, is,
and i, are those of the center of the sphere which passes through the i,, i,,
iy, and i, nuclei.

(c) If {(N1>4)} or {(N1=4) and (volume of region R>¢)},

[i1<m. Let this condition be

min

* The lognormal distribution with two parameters o, and xs, is described as

L (log, x —log, x5)*
Px,x+dx=Wexp[_T dxs x>0
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Table I. Normalization Constants®

Variable Normalization constant
Volume p~!
Surface area p
Face area pH?
Edge length p~lB

“In the present paper the density of nuclei p = 300 nuclei in a
unit cube.

divide the region R into two or more subregions and repeat from step (ii),
taking (i, i,,.., i ;) nuclei into account.

After finding all the vertices in the system, one can easily find the num-
bers of faces and edges for a specific Voronoi cell by searching its vertices
and finding the identities of the corresponding nuclei with which it shares
the vertices. One test regarding the smallness of ¢ is to verify that all the
polyhedra satisfy the topological constraints (i) V+ F— E=2 and (ii) V' =
2F — 4. This algorithm is very efficient compared to that of Mahin et al.*)
because it searches only the vertices and not the edges and the faces, which
take much more time. The computation time is thus drastically reduced.

For the Monte Carlo calculation of the properties of the Voronoi cells,
we generated 300 (Poisson-distributed) random nuclei within a unit cube,
with one of the points at the center of the cube. We then calculated the
properties of the Voronoi cell associated with the central nucleus. This
Voronoi cell was not included in the analysis if one (or more) of its corners
was on the face of the cube. This typically occurred about ten times in
the process of generating 358,000 cells. We have accumulated statistics,

Table l. Properties of Voronoi Cells

Surface Edge length  Edge per

Faces Volume area per cell face
Expected (mean) 155355 1.0000 5.8209 174956 5.22607
Calculated (mean) 15.5431 1.0011 5.8267 17.5204 5.2280
Maximum 36.0000 4.0870 13.8315 — 15.0000
Minimum 4.0000 — — — 3.0000
Standard deviation 33350 0.4198°% 1.4635 - 1.5763
Skewness 0.1738 0.3937 0.1549 — 04307
Kurtosis (—3) 0.0998 0.8108 0.0464 — 0.1431

“ Santalo.®

® Expected value is 0.424.(9

822/67/3-4-7
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indicating a negligible but nevertheless nonzero bias. As Hanson''” had
earlier found faces out to the 98th nearest neighbor, we chose 300 Poisson
points within the cube, so that there would be

4—7T—>< 13><300~157
37\2 =

Poisson points within the sphere embedded within the cube, ie., 156
neighboring cells for the central cell in the cube.

Table lil. Face Distribution (Based on 358,000 Simulated Cells)

Faces Frequency Probability Hanson!”
4 2 5.5866e — 6 0
5 10 2.7933¢e -5 3.3333¢—4
6 117 3.2682¢ — 4 3.3333¢—4
7 570 1.5922¢ — 3 2.0000e — 3
8 2080 5810le—3 3.3333¢~3
9 5347 1.4936e —2 1.5000e — 2
10 11057 3.0885¢ —2 2.6667¢ —2
11 18657 5.2115¢—2 5.1333e -2
12 27548 7.6950e —2 7.7000e — 2
13 35947 1.0041e—1 9.3000e — 2
14 41044 1.1465¢ — 1 1.0633e —1
15 42699 1.1927¢ — 1 1.2800e — 1
16 41117 1.1485¢ —1 1.2667¢ —1
17 36316 1.0144e — 1 9.7667¢ —2
18 29515 8.2444¢ —2 8.5333¢ -2
19 22643 6.3249¢ — 2 6.6000e — 2
20 16193 4.5232¢ -2 4.6000e — 2
21 10962 3.0620e —2 2.8333¢ -2
22 6927 1.9349¢ —2 2.0000e — 2
23 4167 1.1640e —2 1.1000e —2
24 2406 6.7207¢ - 3 6.3333¢ -3
25 1366 3.8156e —3 53333e—3
26 665 1.8575¢—3 1.0000e — 3
27 349 9.7486e — 4 1.3333¢—-3
28 179 5.0000e -- 4 1.3333¢—3
29 71 1.9832¢ —4 0
30 22 6.1453¢ —5 33333e—4
31 14 39106e — 5 0
32 5 1.3966e - 5 0
33 1 2.7933e—6 0
34 2 5.5866e — 6 0
35 1 2.7933¢ -6 0
36 1 2.7933e—6 0




3D Poisson-Voronoi Tesselation 529

3. RESULTS

Table II shows a list of the important parameters for Voronoi cells
along with those deduced analytically by previous workers. Tables ITI-V
and Figs. 2-4 show the various statistical distributions of the faces and the
edges of the Voronoi cells. These results are based on the simulation of
358,000 Voronoi cells.

Tables VI and VII and Figs. 5-10 show the distributions of volume
and surface area of the Voronoi cells. Data points were grouped into inter-
vals defined in the figure captions. Tables VIII and IX and Figs. 11-14
show the statistical properties of the area of the individual faces.
Tables VIII and IX and Figs. 15-17 show the properties of the lengths of
the individual edges of the Voronoi cells. Figure 18 is a plot of the mean
total edge length of the Voronoi cell having a fixed number of faces, which
was calculated by multiplying the mean length of an edge by the number
of edges corresponding to the number of faces, ie., (3 x number of edges
—6). Figure 19 shows the plot of the mean perimeter for faces having a
fixed number of edges. These data are based on the simulation of 102,000
Voronoi cells.

Figure 20 shows the probability distribution (based on the simulation
of 148,000 Voronoi cells) of the use of nearest neighbors of a point in
forming a Voronoi cell face. Figure 21 shows a plot of the mean number
of faces F of neighboring cells for the subset of cells having a fixed number
of faces, designated by the integer subscript F.

Table IV. Distribution of n-Sided Faces (Based on 358,000 Simulated Celis)

Sides Frequency Probability Hanson"
3 748304 1.3448¢ — 1 1.3545¢ — 1
4 1280529 23013e—1 22904 — 1
5 1344428 24161le—1 24121le—1
6 1058408 19021e—1 1.8963¢—1
7 648015 1.1646¢ — 1 1.1511e—1
8 313743 5.6384¢ —2 5.8385¢~2
9 120637 2.1680e —2 2.1963¢ -2

i0 37951 6.8203¢ — 3 6.6743¢ —3
11 9843 1.768% — 3 1.8125¢—3
12 2121 38117¢—4 6.3971e — 4
13 381 6.8471e —5 6.3971e—5
14 56 1.0064¢ — 5 2.1324e -5

is5 14 2.5160e — 6 0
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Table V. Edge Distribution for n-Faced Cells (Based on 358,000 Simulated

Cells)
Number Mean number Standard
of faces of edges deviation Skewness Kurtosis (—3)

4 3.0000

5 3.6000 0.4899 —0.2041 —1.8333

6 40000 0.7000 0.0000 —0.9593

7 42857 0.8546 0.1336 —0.6691

8 4.5000 1.0071 0.2208 —0.5759

9 4.6667 1.1239 0.2724 —04618
10 4.8000 12232 0.3140 —0.3846
11 45091 1.3081 0.3458 —0.3400
12 5.0000 1.3769 0.3724 —0.2723
13 50769 14410 0.3953 —0.2067
14 5.1429 1.4909 0.4088 —0.1539
15 5.2000 1.5376 0.4268 —0.0940
16 5.2500 1.5763 04321 —0.0540
17 5.2941 1.6142 0.4480 —00169
18 5.3333 1.6454 0.4488 00516
19 5.3684 1.6740 0.4602 0.0804
20 54000 1.7024 04648 0.1247
21 54286 1.7228 04699 0.1289
22 54545 1.7413 04716 0.1885
23 54783 1.7633 0.4820 0.1620
24 5.5000 1.7755 04815 0.1830
25 5.5200 1.7944 0.4901 0.1813
26 5.5385 1.7981 0.4844 0.2024
27 5.5556 1.8148 04811 0.2845
28 55714 1.8115 0.4751 0.0782
29 5.5862 1.8608 0.5026 0.1450
30 5.6000 1.8391 0.4923 0.6832
31 56129 1.8928 04835 0.5977
32 56250 21118 0.9848 1.0677
33 5.6364 1.7721 0.9279 —-09723
34 5.6471 1.6783 0.2385 0.4081
35 56571 1.7062 1.6851 —0.1933

36 5.6667 20548 33730 0.1579




3D Poisson-Voronoi Tesselation 531

0.15
— GAMMA
mm OBSERVED
> 0.1
=
=
m
<
[na)
o
g
0.054
1
0 1 1
4 10 20 30

NO. OF FACES

Fig. 2. The probability distribution of faces for 3D Poisson-Voronoi tesselations. This is
based on 358,000 simulated cell data (histogram). The best-fit (discretized) gamma distribu-
tion with parameters a = 21.6292 and b=0.7199 is shown by continuous line.

037
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3 4 5 6 7 8 9 10 1 1
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Fig. 3. The probability distribution of edges for the 3D Poisson—Voronoi tesselation
obtained on the basis of 358,000 simulated cells.
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Fig. 4. The probability distribution of edges for the Voronoi cells having a fixed number of
faces F obtained on the basis of 358,000 simulated cells. The vertical axis and the horizontal
axis denote the probability and the number of edges, respectively. (a) 4-23 faces, (b) 24-27
faces.
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Fig. 5. The probability density distribution of cell volumes in 3D Poisson-Voronoi tessela-
tion. This is based on 102,000 simulated cell data. The volume data were grouped in equal
intervals of width 0.122. The best-fit gamma distribution with parameters a=15.6333 and
b=0.1782 is also shown. See Table I and text for the description of the volume normalization
factor.

Table VIIl. Distributions of Area of Individual Faces and Length of
Individual Edges for n-Edged Face (Based on 102,000 Simulated Cells)

Number Area of individual face Length of individual edge
of
edges Mean Standard deviation Mean Standard deviation
3 0.0457 0.0551 0.2509 0.2295
4 0.1385 0.1463 0.3823 0.2892
5 0.3043 0.2346 0.4481 0.3202
6 0.5047 0.2986 04725 0.3358
7 0.7092 0.3389 0.4730 0.3412
8 0.9067 0.3625 0.4623 0.3405
9 1.0918 0.3797 0.4466 0.3375
10 1.2632 0.3916 0.4289 0.3311
11 1.4331 0.3916 0.4130 0.3251
12 1.5606 0.4000 0.3927 0.3146
13 1.7656 0.4180 0.3842 03116
14 1.8388 0.3886 0.3642 0.2947

15 1.8594 0.3092 0.3345 0.2516
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Table IX. Distribution of Length of Individuai Edge and Area of
Individual Face for n-Faced Cells (Based on 102,000 Simuiated Cells)

Number Length of individual edge
of Standard deviation of area
faces distribution of individual face Mean Standard deviation
5 0.1735 0.6371 0.3734
6 0.2746 0.6710 0.3647
7 0.2930 0.5954 0.3383
8 0.3180 0.5539 0.3479
9 0.3316 0.5263 0.3454
10 0.3440 0.5031 0.3415
11 0.3516 0.4833 0.3373
12 0.3592 0.4687 0.3342
13 0.3667 0.4572 0.3311
14 0.3711 0.4460 0.3278
15 0.3758 0.4366 0.3259
16 0.3768 0.4281 0.3225
17 0.3804 04218 0.3207
18 0.3825 0.4152 0.3184
19 0.3834 0.4087 0.3162
20 0.3842 0.4045 0.3149
21 0.3852 0.3986 0.3125
22 0.3868 0.3950 0.3113
23 0.3878 0.3902 0.3097
24 0.3877 0.3887 0.3081
25 0.3854 0.3841 0.3062
26 0.3832 0.3815 0.3109
27 0.3772 0.3770 0.3003
28 0.3808 0.3773 0.3040
29 0.3714 0.3719 0.2960
30 0.3647 0.3698 0.3088
31 0.3642 0.3592 0.2871

The volume, surface area, area of individual face, and edge length of
the cells are normalized by dividing them by constants. These normaliza-
tion constants depend on the nuclear density within the chosen volume.
They are given in Table I for each type of variable.

4. DISCUSSION

4.1. Face and Edge Distribution

The mean number of faces from our simulation, F is 15.5431, which
is very near Meijering’s exact result""® (F=48n%/35+2=15.5355) and
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Fig. 6. The probability density distribution of volume of Voronoi cells having a fixed

number of faces F. This is based on 102,000 simulated cell data. The volume data were

grouped in equal intervals of width 0.122. The vertical axis and the horizontal axis denote the
probability density and the volume, respectively. See Table I and text for the description of the

volume normalization factor. All the curves can be described by the gamma distribution with
suitable parameters (listed in Table VI).

substantially better than those of Hanson'"” (F=15.63) and Quine and
Watson®!) (F=15.5052).

Hinde and Miles"'® suggested a discretized three-parameter gamma
distribution for the side (edge) distribution in the two-dimensional
Poisson—Voronoi tesselation. Using their data, we found that the best-fit
discretized two-parameter gamma distribution® has a=21.254 and

6 Discretized gamma distribution:

a—1

J*n + 172 X 5
n)y= ——— e dx
st n—172 b°I'(a)
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Fig. 7. Mean volume of Voronoi cells having a fixed number of faces. This is based on
102,000 simuiated cell data. See Table I and text for the description of the volume normaliza-
tion factor. (+) The observed data; solid curve shows the best-fit curve V.= 0.0164F14%,
where Vp is the mean cell volume of an F-faced cell.
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Fig. 8. The probability density distribution of surface area of Voronoi cells in 3D Voronoi
tesselation. This is based on 102,000 simulated cell data. The surface area data were grouped
in equal intervals of width 0.3040. The best-fit gamma distribution with parameters
a=15.4847 and b=0.3778 is also shown. See TableI and text for the description of the
surface area normalization factor.
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Fig. 9. The probability density distribution of surface area of Voronoi cells having a fixed
number of faces F. This is based on 102,000 simulated cell data. The surface area data were
grouped in equal intervals of width 0.3040. See Table I and text for the description of the sur-
face area normalization factor. The vertical axis and the horizontal axis denote the probability
density and the surface area, respectively. All the curves can be described by the gamma
distribution with suitable parameters (listed in Table VII).

b=0.282. These values of g and b give max | f,p. — f5| of 0.00256,” which
is about 2.5 times higher than the 1% Kolmogrov-Smirnov limit 0.00107
(as the sample size used, n=2x 10°, was very large, this difference is not
significant). Note also that the mean value ab works out to be 5.994, which
is within 0.1% of the theoretical value 7 =6.

In three dimensions, the discretized gamma distribution is a good
approximation to the distribution of Voronoi cell faces. The best-fit gamma
distribution has a = 21.6296 and b = 0.7199 (ab = 15.57); for these values of

"max | fo,s — fi| is the maximum of the absolute difference between the fitted and the
observed cumulative distribution functions.
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MEAN SURFACE AREA
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0 10 20 k4l
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Fig. 10. Mean surface area of Voronoi cells having a fixed number of faces. This is based on
102,000 simulated cell data. See Tablel and text for the description of the surface area
normalization factor. (+) The observed data; the solid curve shows the best-fit curve
Sr=0.5614F%%% where S is the mean surface area of an F-faced cell.

a and b, max | f,,, — fu! is 0.00372, which is slightly higher than the 1%
Kolmogrov-Smirnov limit 0.00254 (for n = 358,000).

Our study also shows that for the face distribution in three dimen-
sions, the discretized lognormal distribution with parameters oy, =0.2131
and x5, = 2.7226 satisfies the 1% and 5% Kolmogrov—Smirnov limits up
to 13,000 and 8,000 Voronoi cell data, respectively. The values of 1% and
5% Kolmogrov—Smirnov limits are 1.52/ﬁ and 1.22/\/1;, respectively.

One remarkable point of similarity in the two- and three-dimensional
Voronoi tesselations is that the coefficient of variation (= 1/\/; in the case

03
S
=
%3]
Z, 02
m
@)
>~
o
o]
= 014
<
[a0)
@]
[
=
0.0 T T
0 1 2 3

AREA OF INDIVIDUAL FACE

Fig. 11. The probability density distribution of area of individual faces for 3D Voronoi
tesselation. This is based on 102,000 simulated cell data. The face area data were grouped in
equal intervals of width 0.0485. See TableI and text for the description of the face area
normalization factor.
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Fig. 12. The probability density distribution of the area of individual faces for Voronoi cells
having a fixed number of faces F. This is based on 102,000 simulated cell data. The face area
data were grouped in equal intervals of width 0.0485. See Table I and text for the description
of the face area normalization factor. The vertical axis and the horizontal axis denote the
probability density and the individual face area, respectively.

of the gamma distribution, 0.2169 in two dimensions, and 0.2150 in three
dimensions) is substantially independent of dimensionality. It would be
intriguing if this result were valid for arbitrary dimensionality.

As each Voronoi cell satisfies the two conditions V+ F—~ E=2 and
V' =2F—4, the distributions for the edges and the vertices are not inde-
pendent. The mean for these two distributions can be calculated from the
above two equations:

mean number of vertices = 2F — 4
=27.0862

mean number of edges =3F—6
=40.6293
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Fig. 13. The probability density distribution of area of individual faces having a fixed
number of edges E. This is based on 102,000 simulated cell data. The face area data were
grouped in equal intervals of width 0.0485. See Table I and text for the description of the face
area normalization factor. The vertical axis and the horizontal axis denote the probability
density and the individual face area, respectively.
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Fig. 14. Mean area of faces having a fixed number of edges. This is based on 102,000
simulated cell data. See Table I and text for the description of the face area normalization
factor. (+) The observed data; the straight line shows the best-fit straight line (FA4),=
—0.57251 + 0.18124n, where (FA), is the mean area of an »-sided face, n=4, 5,..., 13.
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Fig. 15. The probability density distribution of the length of individual edges in 3D Voronoi
tesselations. This is based on 102,000 simulated cell data. The edge length data were grouped
in equal intervals of width 0.0390. See Table I and text for the description of the edge length
normalization factor.

These values are very close to the Meijering’s"!® values of 27.0710 and
40.6065, respectively.

The mean number of edges per face, 5.228, is very close to the expected
value 5.226,?% and also to 5.20 +0.06, the value given by Mackay'® for
inorganic crystal structures.

We found that the maximum and the minimum numbers of faces in
our study were 36 and 4, respectively, whereas those reported earlier were
31" and 5,17 respectively. We also found several 15-edged faces, whereas
the earlier reported maximum number of edges in a face was 14.'7)

For F-faced Voronoi cells, the mean number of edges per face E is
equal to 6 —12/F. As F— oo, this value asymptotically approaches to 6,
which is equal to the mean number of edges for the two-dimensional
Voronoi polygons.

4.2. Volume Distribution

The mean and variance for the cell volume distribution, obtained from
102,000 simulated cells, are very close to the expected values, as shown in
Table IL.

Kiang® suggested a=6.0 and »=1/6.0 as the gamma distribution
parameters for the cell volume distribution; whereas Andrade and
Fortes"'® suggested a=5.56 and b=1/5.56. Our study shows that if
we insist on a mean volume of 1.0, ie., ab= 1.0, then the best-fit gamma
distribution parameters are a = 5.7869 and b = 1/a. However, for these values

822/67/3-4-8
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Fig. 16. The probability density distribution of the length of individual edges of Voronoi
cells having a fixed number of faces . This is based on 102,000 simulated cell data. The edge
length data were grouped in equal intervals of width 0.0390. See TableI and text for the
description of the edge length normalization factor. The vertical axis and the horizontal axis
denote the probability density and the individual edge length, respectively.

the maximum of the absolute difference between the observed cumulative
probability function and the fitted cumulative probability function,
max | fops — fal, is 0.00514, which is slightly higher than the 1% critical
Kolmogrov—-Smirnov limit 1.52/\/; {=0.00476).

If we look for the best gamma distribution fit irrespective of the value
of the mean, then our study shows that a=5.6333 and 5=0.1782
(ab=1.0004) gives the best fit and the value of max | f,,s — f5,| in this case
is 0.00289, which is below the 5% critical Kolmogorov-Smirnov limit
1.22/,/n (=0.00382).

It is worth mentioning here that in the one-dimensional case, the
distribution of the segment lengths obtained by the Voronoi partition of a
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Fig. 17. The probability density distribution of the length of individual edges in faces having
a fixed number of edges E. This is based on 102,000 simulated cell data. The edge length data
were grouped in equal intervals of width 0.0390. See Table I and text for the description of
the edge length normalization factor. The vertical axis and the horizontal axis denote the
probability density and the individual edge length, respectively.
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Fig. 18. Mean perimeter of Voronoi cells having a fixed number of faces. This is based on
102,000 simulated cell data. See Table I and text for the description of the edge length
normalization factor. (+) The observed data; the solid curve shows the best-fit curve
(TE) = 1.6552F%8%% where (TE) is the mean total edge length of an F-faced cell.
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Fig. 19. Mean perimeter of faces having a fixed number of edges. This is based on 102,000
simulated cell data. See Table I and text for the description of the edge length normalization
factor. (+) The observed data; the solid curve shows the best-fit curve (TE),= —2.7968 +
3.0534 log, n, where (TE), is the mean total edge length of an n-sided face.

straight line is a gamma distribution with a=2 and »=0.5,"® and also,
Weaire et al.®» showed by computer simulation that the cell area distribu-
tion in a two-dimensional Voronoi partition is best described by the
gamma distribution with a=3.61 and b= 1/a.

Hanson""”) suggested a Maxwell distribution function defined as

32

Px x+dx — 2 e—(4/7f)xz dX

' i
for the volume distribution of the three-dimensional Poisson—Voronoi cells.
1.0 1
0.8
06

0.4 -

0.2

PROBABILITY OF USE

0.0

1 T T 1 1
0 10 20 0 40 0
NEAREST NEIGHBOR NUMBER, n
Fig. 20. Probability of the nth-nearest-neighbor Voronoi cell sharing a common face. This
is based on data for 148,000 simulated cells. (+) The observed data; the solid curve shows

the best-fit curve!”) P, =exp[ —0.01471(n— 1)*°], where P, is the probability of the use of
the nth neighbor of a point in forming a Voronoi cell face.
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Fig. 21. The joint probability distribution of faces. The vertical axis Fr denotes the mean
number of faces for the neighboring cells of a cell having F faces. (+ ) The observed data; the
straight line shows the best-fit straight line Fp=16.57 — 0.02F.

The relationship becomes

2
g 32N <9> o iy &

7'52

v

v

where n is the expected number of observations in any interval of width
(dv/v) and N is the total number of cases observed. For the Maxwell
distribution, the value of max | f,,, — /5| is 0.019137, which is very high
relative to the 1% critical Kolmogrov—Smirnov limit of 0.00476. Hence, we
conclude that the gamma distribution gives a better fit to the cell volume
distribution than the Maxwell distribution.

Kurtz and Carpay" suggested the lognormal distribution for the
grain volume distribution. Our study shows that for the volume distribu-
tion of the Voronoi cell, the lognormal distribution with parameters
01 =0.4332 and x5, = —0.0735 satisfies 1 % and 5% KS limits up to 7000
and 5000 Voronoi cell data, respectively.

The cell volume distribution for a fixed number of faces F is also found
to be best described by the gamma distribution with suitable parameters.
The values of the parameters for such classes of faces are listed in Table VI.

Figure 7 shows the piot of mean cell volume for a fixed number of
faces W vs. F. The curve can be described by the equation

Vr=0.0164F14%
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where V' is the mean cell volume of an F-faced cell, and F is the number
of faces, 6-29.

For F=15.5355, i.e., for the mean number of faces, from the above
equation, V,=0.9987, which is very close to the expected value for the
volume of the three-dimension Poisson—Voronoi cell, i.e., 1.0.

4.3. Surface Area Distribution

The mean surface area of the simulated Voronoi cells is very close to
the expected value, as shown in Table II. The cell surface area distribution
is best described by a gamma distribution with parameters a = 15.4847 and
b=10.3778. In this case max | f s — fr| 15 0.00785, which is about 1.5 times
higher than the 1% critical Kolmogrov—Smirnov value 1.52/\/Z, ie.,
0.00476 (remembering that the sample size used was very large,
n=102,000). If we insist on a mean of 58209, then the best-fit gamma
distribution has the parameters a=16.1576 and b=0.3603, and
max | fope — friel is 0.01480.

Our study shows that for the surface area distribution of a Voronoi
cell, the lognormal distribution with parameters o,,=0.2533 and
Xso=1.7436 satisfies 1% and 5% Kolmogrov—Smirnov limits up to 7000
and 4000 Voronoi cell data, respectively. The cell surface area distribution
for a fixed number of faces is also best described by the gamma distribution
with suitable parameters. The values of the parameters for such classes of
faces are listed in Table VIL. Figure 10 shows the plot of mean cell surface
area for a fixed number of faces S vs. F. The curve can be described by the
equation

Sp=0.5614F 0552

where S is the mean surface area of an F-faced cell, and F= 6-29.

For F=15.5355, i.e., for the mean number of faces, from the above
equation, S,=5.8210, which is very close to the expected value for the
surface area of the three-dimensional Poisson—Voronoi cell, i.e., 5.8209.(1»

4.4, Area of Individual Faces

A plot of the mean area of an n-sided face versus » is shown in Fig. 14.
As shown in the figure, the mean area of a face varies linearly as the
number of sides n. Using the least square method, one can write a linear
relation

(FA), = —0.57251 +0.18124n

where (FA), is the mean area of an n-sided face, and n=4, 5,..., 13.
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For the three-dimensional Poisson—Voronoi cell, the expected number
of edges in a face is equal to 5.226.* From the above equation, for
n=15.226, the mean area of a face is equal to 0.3747, which is equal to the
expected area of a face (=5.8209/15.5355).

4.5. Edge Length Distribution

As shown in Fig. 15, the probability density distribution of the length
of individual edges is linear for a considerable length. Thereafter, it drops
off at a slower rate. The variation of the mean total edge length of an
F-faced Voronoi cell with respect to F is shown in Fig. 18. The equation for
the mean total edge length of an F-faced Voronoi cell can be written as

(TE) = 1.6552F085%

where (TE), is the mean total edge length of an F-faced cell, and F=7-31.
For F=15.5355, i.e.,, for the mean number of faces, from the above
equation, the mean total edge length for the Voronoi cell is equal to
17.4950, which is very close to the expected value of 17.4956.(>
The variation of the mean total edge length, ic., perimeter, for an
n-sided face with respect to n is shown in Fig. 19. The equation for the
perimeter of an n-sided face can be approximated by

(TE), = —2.7968 +3.0534 log, n

where (TE), is the mean total edge length of an n-sided face, and n =3-13.

For the expected number of edges in a face, i.e., n=5.226,'*®) from the
above equation the mean total edge length per face is equal to 2.2524,
which is very near to its expected value of 2.2523 (=2 x 17.4956/15.5355).

4.6. Nearest Neighbor Use
Hanson'” suggested the equation

P, =exp[ —0.01471(n— 1)*]

for the probability distribution of the use of the nth neighbor of a point in
forming a Voronoi cell face. Figure 20 is based on 148,000 simulated cell
data. The function P, predicts slightly lower probabilities of use for the
second to eight nearest neighbors than the observed probabilities, and
slightly higher probabilities of use for the 9th to 29th nearest neighbors,
and fits the data well beyond the 29th neighbors.

Hanson"” found two faces at the 98th nearest neighbor, but we found
three faces, one each at the 115th, 119th, and 138th nearest neighbors.



550 Kumar et al.

4.7. Correlation of Faces

We generated 10,000 Poisson points within a cube having side
lengths equal to 1.30 and, using the algorithm described above, simulated
the Voronoi cells within a unit cube (of unit length) in the center of the
original cube. We discarded those cells which had some portions on the
unit cube faces, to eliminate any boundary effect. Finally, we had the data
for 3729 Voronoi cells. The mean number of faces for the neighboring cells
of the F-faced Voronoi cell is shown in Fig. 21. By using the least squares
method, the results can be written as

Fp=16.57—0.02F

where F, is the mean number of faces for the neighboring cells of an
F-faced cell.

5. CONCLUSION

A detailed statistical analysis of the three-dimensional cellular
microstructure generated by a Poisson—Voronoi tesselation was carried out
for up to 358,000 cells using Monte Carlo methods. The results show that
a two-parameter gamma distribution gives an accurate fit to the distribu-
tion of faces, volumes, and surface areas of the cells. The cell volume and
surface area distributions for a fixed number of faces are also found to be
best described by the gamma distribution. Distributions of the areas of
individual cell faces and the edge lengths were also obtained, but no
well-known distribution was found to accurately describe them. For
cellular microstructures limited to several thousand cells or less, a two-
parameter lognormal distribution was found to give an accurate fit at a 5%
level of significance for the distributions of cell faces, surface areas, and
volumes.

ACKNOWLEDGMENTS

Financial support for this work was provided by Murata Corporation.
Computations were performed on the IBM 3090 at the Center for
Academic Computing, Pennsylvania State University, whose assistance is
gratefully acknowledged. We also acknowledge helpful discussions of this
work with Nandini Kannan, Department of Statistics, Pennsylvania State
University.

REFERENCES

1. A. J. Rahman, J. Chem. Phys. 45:2585 (1966).
2. A. L. Mackay, J. Microsc. 95(2):217-227 (1972).



3D Poisson-Voronoi Tesselation 551

o N oL R W

. F. M. Richards, Annu. Rev. Biophys. Bioeng. 6:151-176 (1977).

V. Icke and R. Van de Weygaert, Astron. Astrophys. 1987:16-32.

R. Van de Weygaert and V. Icke, Astron. Astrophys. 213:1-9 (1989).
D. Weaire and J. P. Kermode, Phil. Mag. B 50:379 (1984).

J. L. Finney, J. Mol. Biol. 96:721 (1975).

. A, Getis and B. Boots, Models of Spatial Processes (Cambridge University Press,

Cambridge, 1979).

. C. S. Smith, Metal Interfaces (American Society for Metals, Cleveland, Ohio, 1952).
10.
11
12.
13.
14.
15,
16.
17.
18
19.
20.
21
22.
23,

F. N. Rhines and K. R. Craig, Metall. Trans. 5A:413 (1974).
S. K. Kurtz and F. M. A. Carpay, J. Appl. Phys. 51:5725 (1980).
H. V. Atkinson, Acta Metall. 36:469—491 (1988).

A. L. Hinde and R. E. Miles, J. Stat. Comput. Simul. 10:205-223 (1980).

E. N. Gilbert, Ann. Math. Stat. 33:958 (1962).

J. L. Meijering, Philips Res. Rep. 8:270-250 (1953).

P. N. Andrade and M. A. Fortes, Phil. Mag. B 58:671-674 (1988).

H. G. Hanson, J. Stat. Phys. 30:591 (1983).

T. Kiang, Z. Astrophys. 64:433-439 (1966).

K. W. Mahin, K. Hanson, and J. W. Morris, Jr., Acta Metall. 28:443-453 (1980).
M. F. Vaz and M. A. Fortes, Scripta Metall. 22:35-40 (1988).

M. P. Quine and D. F. Watson, J. Appl. Prob. 21:548-557 (1984).

D. Weaire, J. P. Kermode, and J. Wejchert, Phil. Mag. B 53:L101-105 (1986).
L. A. Santalo, Integral Geometry and Geometric Probability (Addison-Wesley, Reading,
Massachusetts, 1976).



